Welcome to another lesson of programming with the Intel Galileo. In this lesson we will be using a joystick to control LED’s on an LED matrix.

The joystick has two voltage inputs, one for Up/Down tilting, and the other for Left/Right tilting. A variable resistor is connected to each of the two voltage inputs. The amount of resistance provided by the variable resistors is dependent upon how far the joystick is tilted from center.

For example, when the joystick is tilted to the right, the resistance on the variable resistor, connected to the L/R voltage supply, is decreased, resulting in a greater voltage value being output on the L/R pin. When the joystick is tilted to the left, the resistance on the variable resistor is increased, resulting in a lower voltage value being output on the L/R pin.

Follow the diagram below to correctly connect the joystick to the micro-controller.

Note: Your capacitors may have a polarity that must match up.

Important: Make sure to include the resistors and capacitors when connecting the joystick to the Galileo. Without them, there is a risk of burning out the microcontroller.
Begin by initializing and declaring variables for each direction. (Your Direction might vary depending on which pins you’re using from the joystick and the position of your joystick. Some prefer rotating the joystick because of the position of the breadboard).

```c
1 int joyHorizontal = A0;
2 int joyVertical = A1;
3
4 void setup() {
5     pinMode(joyHorizontal, INPUT);
6     pinMode(joyVertical, INPUT);
7 }
```

Video Demonstration: https://youtu.be/CBRE00s4q58

Exercise 1: Testing and Display of Result

Program the Intel Galileo to read from the joystick both Horizontal and Vertical readings and print them to the Serial Monitor with a delay of 500ms.

Exercise 2: Shifting an LED with a Joystick

Design a system where an illuminated LED is shifted left or right along the top row of an LED matrix. For this part of the lab, only use the L/R output from the joystick. Connect the LED matrix according to the diagram and pinouts given below.
The Circuit
Arduino Schematic created using Fritzing [http://fritzing.org/home/]
Output Pins

<table>
<thead>
<tr>
<th>PIN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 8</td>
<td>GND Ground, Vss</td>
</tr>
<tr>
<td>PIN 9</td>
<td>Q7" Serial Out</td>
</tr>
<tr>
<td>PIN 10</td>
<td>MR Master Reclear, active low</td>
</tr>
<tr>
<td>PIN 11</td>
<td>SH_CP Shift register clock pin (Clock Pin)</td>
</tr>
<tr>
<td>PIN 12</td>
<td>ST_CP Storage register clock pin (latch pin)</td>
</tr>
<tr>
<td>PIN 13</td>
<td>OE Output enable, active low</td>
</tr>
<tr>
<td>PIN 14</td>
<td>DS Serial data input (Data Pin)</td>
</tr>
<tr>
<td>PIN 16</td>
<td>Vcc Positive supply voltage</td>
</tr>
</tbody>
</table>

The Programming

```c
#include <Matrix.h>

// First Shift Register
#define LATCHPINONE 10
#define CLOCKPINONE 12
#define DATAPINONE 11

// Second Shift Register
#define LATCHPINTWO 6
#define CLOCKPINTWO 8
#define DATAPINTWO 7

Matrix led(LATCHPINONE, CLOCKPINONE, DATAPINONE,
           LATCHPINTWO, CLOCKPINTWO, DATAPINTWO);

int xCoordinate = 1;
int yCoordinate = 4;

void setup() {
  led.begin();
  led.lightLED(xCoordinate, yCoordinate);
  led.printMatrix();
}
```
Matrix Library

Download from the resources provided.

Important functions:

Matrix led(LATCHPINONE, CLOCKPINONE, DATAPINONE, LATCHPINTWO, CLOCKPINTWO, DATAPINTWO); //Initialization

led.lightLED(xCoordinate,yCoordinate); //Prepares led to be illuminated

led.printMatrix(); //Illuminates LED

Criteria:

- When the joystick is tilted LEFT, the illuminated LED should shift to the left. If the joystick is still tilted left when the illuminated LED reaches the far left, the illuminated LED should reset to the far right, and continue shifting left as long as the joystick is tilted left.
- When the joystick is tilted RIGHT, the illuminated LED should shift to the right. If the joystick is still tilted left when the illuminated LED reaches the far right, the illuminated LED should reset to the far left, and continue shifting right as long as the joystick is tilted right.
- When the joystick is in the middle position, the LED should remain stationary.

Exercise 3: Variable Speed LED

Expand upon exercise 2 of the lab by adjusting the speed the illuminated LED shifts depending on how far left or right the joystick is tilted. For example, if the joystick is tilted only slightly to the right, the LED will move slower. However, if the joystick is tilted all the way to the right, the LED will move much faster.

Criteria:

- Same as exercise 2
- The illuminated LED should shift once every 1000ms, 500ms, 250ms, or 100ms, depending on how far the joystick is tilted left or right.
- If the joystick is in the center position, the illuminated LED should remain stationary.
Exercise 4: Shifting an LED in 8 Directions

Design a system that moves an illuminated LED (controlled by the joystick) around a 5x8 LED matrix. The LED can be moved up, down, left, right, up/left, up/right, down/left, or down/right.

Criteria:
- If the illuminated LED reaches an edge of a matrix, it remains there unless moved away from the edge. For example, if the illuminated LED reaches the far left edge of the matrix, continuing to tilt the joystick left will have no effect, but tilting the joystick right will move the illuminated LED away from the edge.

Exercise 5 (challenge): Variable Speed LED in 8 Directions

Expand upon exercise 4 by increasing the speed at which the illuminated LED shifts depending upon how far the joystick is tilted from center.

Criteria:
- Same as part 4 only with the added criteria of variable shifting speed.
- Possible shifting speeds are: 1000 ms, 500 ms, 250 ms, and 100 ms.
- The farther the joystick is tilted away from center, the faster the LED is shifted.