Exploring Speed and Energy Tradeoffs in Droplet Transport for Digital Microfluidic Biochips

Johnathan Fiske Daniel Grissom Philip Brisk
Department of Computer Science and Engineering
University of California, Riverside
Riverside, CA 92521, USA

Abstract - This paper transforms the problem of droplet routing for digital microfluidic biochips (DMFBs) from the discrete into the continuous domain, based on the observation that droplet transport velocity is a function of the actuation voltage applied to electrodes that control the devices. A new formulation of the DMFB droplet routing problem is introduced for the continuous domain, which attempts to minimize total energy consumption while meeting a timing constraint. Henceforth, DMFBs should be viewed as continuous, highly integrated cyber-physical systems that interact with and manipulate physical quantities, as opposed to inherently discrete and fully synchronized devices.

I. Introduction

Programmable microfluidic technology has the potential to revolutionize many subfields of (bio-)chemistry and bioengineering through miniaturization and automation [4, 5]. One such technology is the Digital Microfluidic Biochip (DMFB), which manipulated discrete (hence the name “digital”) droplets of liquid on a two-dimensional grid of electrodes [17], as shown in Fig. 1; Fig. 2 shows the basic operations supported: transport, merging and splitting, mixing, and storage. Over the past decade, there has been considerable interest in automating the process of compiling assays (biochemical protocols) into software programs that control the actuation of droplets on a DMFB [2, 10], shown in Fig. 3.

A DMFB is a cyber-physical system (CPS), meaning that it includes computational and physical components whose operation is tightly interleaved [12, 13]. One challenge in CPS design is that the computational domain is necessarily discrete and synchronized, i.e., actions occur on the granularity of clock cycles; in contrast, the physical domain is continuous. Prior work on DMFB compilation has imposed constraints on the system, which force it to operate in a discrete manner. One such example is the way that droplet transport, i.e., routing [1, 3, 11, 16, 18, 22, 25], is modeled.

A DMFB is assumed to operate synchronously: a typical actuation frequency is 100 Hz, [25], i.e., it takes 10 ms to transport one droplet to a neighboring electrode. By considering the state of the system only at 10 ms intervals, the entire system can be discretized, as shown in Fig. 4(a): a droplet can either stay at rest (e.g., Droplet 2 at 10ms), or move to a neighboring electrode (e.g., Droplet 2 at 20ms); if both electrodes are activated, then the droplet will stretch into an oval shape that covers both electrodes.

In actuality, the velocity of a droplet traveling across the surface of a DMFB is a quadratic function of the voltage applied to each electrode [15, 17]. Thus, discretizing droplet transport through synchronization assumes that the same voltage value is always applied to each electrode. In practice, this does not need to be the case; moreover, there is no reason to believe that synchronization yields optimal or near-optimal performance (i.e., minimum droplet transport time) or energy consumption; but, considering continuous voltages and velocities transforms the problem of droplet routing from the discrete to the continuous domain, which changes the nature of the problem and the algorithmic solutions that are required, as shown in Fig. 4(b).

This paper introduces the first droplet transport algorithm for DMFBs that considers continuous voltages applied to electrodes, and continuous, rather than discrete, droplet velocities, thereby dropping the implicit assumption of synchronized droplet transport in prior work. A continuous time, voltage-aware formulation of the droplet routing problem is introduced that tries to minimize energy consumption during droplet transport given a timing constraint. This approach yields significant reductions in energy consumption without adversely affecting droplet routing times. Even greater energy savings could potentially be achieved by relaxing the timing constraint as well.
Several heuristics divide droplet routing into two parts [3, 11, 18]: (1) path planning, which determines the route that each droplet takes from its source to its destination, assuming that droplets are routed one-by-one; and (2) route compaction, which converts the path planning result into a set of concurrent routes while adhering to proper spacing rules and trying to minimize the route of the longest droplet; thus, The algorithms presented in this paper take a similar approach: path planning followed by route compaction; in fact, any path planning algorithm can be used. We modified the compactor to consider voltage assignment to electrodes and the resulting droplet velocity in the continuous domain.

One recent paper varies the voltages applied to electrodes in a DMFB to improve reliability [23]. Another throttles droplet velocity by varying the frequency of electrode actuation [12]. To the best of our knowledge, no other papers have looked into the issues of varying voltage assignment and/or droplet velocity. Our objective is to reduce energy consumption, which is synergistic with, but not directly related to reliability.

III. Continuous-Time Droplet Routing: Preliminaries

A. Context and Spacing Rules

We assume that the assay has already been scheduled and placed on the DMFB; in principle, any appropriate algorithm could be used to accomplish these two steps. Droplet routing is decomposed into a series of sub-problems that must be solved [22].

As shown in Fig. 5, droplets must obey spacing rules to prevent inadvertent merging [22], which were originally introduced for discrete droplet transport. The spacing rules define an interference region (IR) around each droplet; if one droplet enters the IR of another, then the two will merge; to ensure correctness, the router must prevent this from occurring. The IR for a droplet resting at position \(p = (x, y) \) is the 3x3 sub-array surrounding \(p \).

The interference region for a droplet that is moving from position \(p_1 = (x, y) \) to an adjacent position, \(p_2 \), which is \((x ± 1, y)\) or \((x, y ± 1)\), is the 3x4 sub-array surrounding \(p_1 \) and \(p_2 \). The former is called the static constraint, and the latter is called the dynamic constraint, as shown in Fig. 5. Consider a droplet at position \(p_t \) at time \(t \) in the discrete domain. If the droplet remains at position \(p_t \) at time \(t+1 \), then the static constraint must be satisfied; if it moves to an adjacent position at time \(t+1 \), then the dynamic constraint must be satisfied. Given the respective positions of each droplet in a larger set as a function of time, it is straightforward to determine whether any pair of droplets violates the static or dynamic constraint, as the number of constraint checks is finite.

In the continuous domain, at time \(t \), a droplet is either at rest in position \(p_t \), or in transport from position \(p_1 \) to adjacent position \(p_2 \): the static constraint must be satisfied in the former case, while the dynamic constraint must be satisfied in the latter case.

Droplets undergoing transport must also maintain a 1-position margin of separation with all other ongoing assay operations, such as mixing and storage; the size and location of these respective operations are fixed for the duration of each routing sub-problem.

Fig. 5. The static interference region of a droplet at rest (left); the dynamic interference region of a droplet in motion (right).
B. Problem Statement

In a routing sub-problem, the input is a set of droplets to route, \(D = \{d_1, d_2, \ldots, d_n\} \). The initial position of droplet \(d_i \) is called a source, denoted \(\text{src}(d_i) \); \(d_i \)'s final position is called a sink, denoted \(\text{sink}(d_i) \). Each droplet must be routed from source to sink without violating static/dynamic interference constraints, while maintaining a 1-position separation with all ongoing assay operations. The objective is to minimize the completion time of all droplet routes.

C. Continuous-Time Routing Interference Constraints

The path taken by droplet \(d_i \) is a sequence of positions taken by \(d_i \) along the route from \(\text{src}(d_i) \) to \(\text{sink}(d_i) \), and is denoted by the ordered sequence \(P(d_i) = <p_{i,1}, p_{i,2}, \ldots, p_{i,N}> \), where \(p_{i,j} = \text{src}(d_i) \), \(p_{i,N} = \text{sink}(d_i) \), and \(p_{i,j+1} \) is adjacent to \(p_{i,j} \) for \(1 \leq j \leq N-1 \).

In the discrete model, \(d_i \) spends \(z_{i,j} \geq 1 \) time-steps at position \(p_{i,j} \) along the path, as it may be necessary to wait while other droplets pass by. The number of time-steps spent during routing is

\[
Z(d_i) = \sum_{j=1}^{N} z_{i,j}. \tag{1}
\]

In the continuous model, \(d_i \) will spend a continuous amount of time \(t_{i,j} \geq 0 \) at position \(p_{i,j} \) during which the static interference constraint must be satisfied, followed by time \(u_{i,j} > 0 \) while moving from \(p_{i,j} \) to adjacent position \(p_{i,j+1} \), during which the dynamic interference constraint must be satisfied. The total amount of time spent during routing is

\[
T(d_i) = \sum_{j=1}^{N-1} (t_{i,j} + u_{i,j+1}(t_{i,j+1})). \tag{2}
\]

and the total time spent routing \(d_i \) from \(\text{src}(d_i) \) to position \(p_{i,j} \) is

\[
U(d_i, p_{i,j}) = \sum_{k=0}^{j-1} t_{i,k} + u_{i,j+1}(t_{i,j+1}). \tag{3}
\]

where \(t_{i,0} = u_{i,0} = 0 \).

The continuous time interval at which \(d_i \) waits at position \(p_{i,j} \) is therefore given by the pair

\[
I(d_i, p_{i,j}) = \left[U(d_i, p_{i,j}), U(d_i, p_{i,j}) + t_{i,j} \right]. \tag{4}
\]

and the continuous time interval at which \(d_i \) is spent in transportation from position \(p_{i,j} \) to \(p_{i,j+1} \) is given by the pair

\[
J(d_i, p_{i,j}, p_{i,j+1}) = \left(U(d_i, p_{i,j}) + t_{i,j}, U(d_i, p_{i,j+1}) \right). \tag{5}
\]

Thus, the timing information associated with each path is given by the ordered sequence of pairs

\[
Q(d_i) = <I(d_i, p_{i,1}), J(d_i, p_{i,1}, p_{i,2}), \ldots, I(d_i, p_{i,N-1}, p_{i,N}), J(d_i, p_{i,N}, p_{i,N+1})>. \tag{6}
\]

Fig. 6 shows an example in which a droplet moves continuously across six positions; it waits at the fourth position for six time-units, and then increases its velocity as it travels to the sixth.

If droplet \(d_i \) moves across the chip with positive velocity, then it remains at position \(p_{i,j} \) for an instant, which is assumed to consume no time. Hence, in the continuous model, \(I(d_i, p_{i,j}) = 0 \) except when the droplet explicitly pauses at position \(p_{i,j} \). A droplet may pause for two reasons: (1) to prevent the violation of an interference constraint; or (2) the droplet arrives at its respective sink and stops while waiting for other droplets to complete their routes.

Lemma 1. Any (static or dynamic) interference constraint between droplets \(d_i \) and \(d_j \) can be detected at continuous time \(t \in [t_1, t_2] \) such that \((t_1, t_2) \in Q(d_i) \) and \((t_3, t_4) \in Q(d_j) \).

Proof: Since \(d_i \) and \(d_j \) are initially placed at a location where a static constraint violation occurs (i.e., before droplets start to move), we are done, as \(t = t_1 = t_2 = 0 \). Now, assume that the constraint violation occurs at time \(t > 0 \). Either \(d_i \) or \(d_j \) must be in motion to cause the violation to occur; otherwise, it would have occurred at time \(t' < t \). A constraint violation is an activation of an electrode at a position \(p^* \) inside the interference region of both \(d_i \) and \(d_j \). The constraint violation occurs at the instant either droplet starts to move from an initial position \(p < p^* \) toward an adjacent position \(p^* \). \(\Box \)

Fig. 7 illustrates the proof of Lemma 1. Lemma 1 shows how to determine if constraint violations occur in continuous time. If there are \(K \) droplets in the system, traverse \(Q(d_i) \) for \(i = 1 \) to \(K \); for each interval \((t_1, t_2) \in Q(d_i) \) identify the exact position of each other droplet \(d_j \) at time \(t \). If \(d_j \) is moving toward position \(p^* \) at time \(t \), then a constraint violating occurs if \(p^* \) is in the static or dynamic interference region of \(d_j \), depending on whether \(d_i \) is at rest or in motion.

The total number of interference checks that must be made to verify that the routes of all droplets are interference-free is

\[
C = (K - 1) \sum_{i=1}^{K} |Q(d_i)|. \tag{7}
\]

Since droplets move at different velocities, the constraint check is antisymmetric. For example, suppose that droplets \(d_i \) and \(d_j \) have a constraint violation at time \(t_s \) when \(t_1 < t_s < t_2 \) for \((t_1, t_2) \in Q(d_i) \) and \(t_3 < t_s < t_4 \) for \((t_3, t_4) \in Q(d_j) \), such that \(t_1 < t_2 < t_3 < t_4 \). The constraint violation is observable at time \(t_2 \), but not at time \(t_1 \), in accordance with Lemma 1. In contrast, interference constraint violations in the discretized, synchronized case are symmetric.

D. Simplifying Assumptions

In DMFB routing, droplets move horizontally or vertically, but not diagonally [22]; we make the same assumption here.

Given a droplet path \(P(d_i) \), as defined in the preceding section, a segment is defined to be a maximum-length contiguous subsequence \(<p_{i,j}, p_{i,j+1}, \ldots, p_{i,k}> \) of \(P(d_i) \) in which \(d_i \) travels in one direction (left, right, up, or down). Let \(s_{i,j} \) denote the \(j^\text{th} \) segment along path \(P(d_i) \), and let \(S(d_i) = <s_{i,1}, s_{i,2}, \ldots, s_{i,N}> \) (recall that \(N \) is the number of positions along the path) denote the decomposition of \(P(d_i) \) into segments.

![Fig. 6. Example illustrating continuous-time-domain droplet routing parameters: droplet \(d_i \) starts at position \(p_{i,1} \) at time zero. It travels to \(p_{i,2} \) at a velocity of \(1/3 \) of a position per time-unit. It then waits at \(p_{i,3} \) for 6 time-units, and travels to \(p_{i,4} \) at a velocity of \(1/2 \) of a position per time-unit. It then waits at \(p_{i,5} \) for 11 additional time-units. The total time taken, including transport and waiting, is 30 time-units.](image)
For example, suppose that droplet \(d_i \) travels from \(src(d_i) = (1, 1) \) to \(sink(d_i) = (4, 2) \) along path \(P(d_i) = \langle (1, 1), (2, 1), (3, 1), (4, 1), (4, 2) \rangle \); \(P(d_i) \) can be decomposed into a horizontal segment \(s_{i,1} = \langle (1, 1), (2, 1), (3, 1), (4, 1) \rangle \) and a vertical segment \(s_{i,2} = \langle (4, 1), (4, 2) \rangle \), so \(S(d_i) = \langle s_{i,1}, s_{i,2} \rangle \). It is important to note that the subsequence \(\langle (1, 1), (2, 1), (3, 1) \rangle \) is not considered to be a segment here, because it is not maximal length.

We assume that each droplet travels at a constant velocity along each segment, and that the droplet may only stop at the initial and final segment positions. This means that voltage selection is performed on the granularity of segments, but interference constraints must still be resolved on the granularity of positions in continuous time, as discussed in the preceding section.

E. Velocity and Energy Models

Continuous time-domain droplet routing introduces, a new degree of freedom: to select the voltage applied to each electrode from a continuous range, as opposed to turning the electrode on (at a constant voltage) or off; the router must still adhere to continuous time-domain interference constraints (Section III.C).

This subsection summarizes the equations used to estimate the droplet velocity and power consumption that results from applying a voltage to an electrode in an active-matrix DMFB [9, 15]. To avoid confusion with notation established in previous sections, we use words, rather than letters, to represent these quantities. Droplet velocity (mm/s) as a function of voltage is derived from existing data [15, Fig. 3(a)] using a least-squares quadratic approximation:

\[
Velocity = 0.005 \times Voltage^2 + 0.0358 \times Voltage - 0.9103
\]

The energy consumption of each electrode depends on the voltage applied, the electrode’s resistance, and the length of time that the voltage is applied:

\[
Energy = Power \times Time = \frac{Voltage^2}{Resistance} \times Time
\]

As noted previously, we assume that a droplet moves at a constant velocity along each segment; i.e., a constant voltage is applied to each electrode along the segment, and only one electrode (per droplet) is activated at any time.

F. Technology Parameters

The typical resistance of an electrode in an active-matrix DMFB is around 1GΩ, and the electrode pitch was reported to be 2.54mm [15], which we take to be the length of each square in the DMFB array. We assume that there are minimum and maximum voltage levels (13 and 70 Volts respectively) for electrode actuation.

Voltages below the minimum cannot actuate droplet motion, and voltages above the maximum will physically degrade the chip. As an example, consider the voltage applied to transport droplet \(d_i \) along segment \(s_{i,j} \); let \(|s_{i,j}| \) denote the number of positions that comprise the segment, so the total distance to travel along this segment will be \(2.54 \text{mm} \times |s_{i,j}| \). The droplet velocity (and thus, the total time traveled, which we will denote \(\Delta T_{i,j} \)) depends on the constant voltage level \(V_{i,j} \) chosen for this segment.

The energy consumed to transport \(d_i \) along segment \(s_{i,j} \) denoted by \(E_{i,j} \), depends on \(V_{i,j} \) and \(\Delta T_{i,j} \) as well:

\[
E_{i,j} = \frac{V_{i,j}^2}{1000} \times \Delta T_{i,j}
\]

As per Eq. (8), \(\Delta T_{i,j} \) also depends on \(V_{i,j} \) (via the classic mechanical equation: \(distance = velocity \times time \)). Thus, as long as droplet paths are determined a-priori, \(E_{i,j} \) depends only on voltage.

We assume that 10 Volts are required to hold a droplet in-place; if no voltage is applied, the droplet will not be anchored and will drift aimlessly. Thus, a droplet at rest consumes energy regardless of whether a discrete or continuous routing model is used.

IV. Continuous-Time Droplet Routing Algorithms

Section III.A characterized the droplet routing problem; the objective was to finish all of the routes as quickly as possible, which is equivalent to minimizing the length (in time) of the longest route. This formulation of the droplet routing problem does not account for potential tradeoffs between droplet velocity and energy consumption of the device. Here, we assume that a time constraint is provided and the objective is to minimize energy consumption while meeting the timing constraint.

The algorithms that we introduce here employ the assumptions outlined in Section III.E. Our algorithm takes a two-part approach, in which droplet routing paths are computed a-priori, followed by a compaction step which enables concurrent droplet transport. Given the set of routing paths, compaction determines the sequence of timing intervals \(Q(d_i) \) for each droplet \(d_i \), as discussed in Section III.D. The compactor must prevent interference violations from occurring to ensure a legal routing solution. The voltage-aware formulation of the routing problem adds an additional constraint (timing) while defining a new optimization criterion (minimize energy) in addition to the basic criteria for an interference-free droplet route.

A. Compaction Strategy

Our implementation is based on an algorithm published by Roy et al. [18], which uses a Maze Router to compute droplet routes, and then applies a greedy heuristic to perform compaction. The heuristic sorts the droplets based on a priority function, and compact the routes one-by-one. A typical priority function, which we use in our implementation, is to prioritize the droplets by the length of their routes, such that droplets with the longest routes have the highest priority. A droplet \(d_i \) is compacted when the velocity along each segment in its route and the waiting time at each segment endpoint are known; i.e., once \(Q(d_i) \) is computed.

In this algorithm, compacted routes are never revisited. When compacting droplet \(d_i \), the compacted routes for all higher priority droplets impose constraints that must be satisfied to ensure a legal routing solution. If \(d_i \)’s route crosses the compacted route of a higher priority droplet \(d_j \), then the compactor must construct \(Q(d_j) \) in a manner that prevents interference constraint violations involving any higher priority droplets from occurring; lower priority droplets are not given any consideration during compaction until they are routed themselves.
V. Simulation Results

A. Setup and Approach

We implemented the timing-constrained cyber-physical droplet routing algorithm in a publicly available open source framework for DMFB synthesis [8]. We modeled an active matrix DMFB [15], whose technology parameters are reported in Section III.F. We used a synthesis flow described in ref. [7] as our baseline; which includes Roy’s algorithm for droplet routing [18]. We replaced the discrete compaction phase of Roy’s algorithm with the continuous-time domain compactor described in Section IV.B, and compared the energy consumption with that of the baseline. We used a standard set of DMFB benchmarks that are publicly available and have been used in prior studies on DMFB synthesis and routing: polymerase chain reaction (PCR), multiplexed in-vitro diagnostics (In-vitro 1-5), and protein crystallization (ProteinSplit 1-4 and Protein).

Here, we focus on individual routing sub-problems in which multiple droplets are transported. For each routing sub-problem, we first route the droplets using the baseline routing algorithm using a constant voltage; the droplet transport velocity for a given voltage level is given by Eq. (8). We record the time \(t \) at which the last droplet finishes its route, along with the energy \(E_{\text{Base}} \) expended to transport all droplets, as modeled by Eq. (9). We then run the time-constrained droplet routing algorithm, described in Section IV, using \(t \) as a timing constraint; we record the energy expended to transport all droplets, denoted \(E_{\text{TC}} \). We report the energy savings \(E^* = (E_{\text{Base}} - E_{\text{TC}})/E_{\text{Base}} \) as a percentage.

Among the seven assays that we considered, PCR, Protein, and five variations of multiplexed in-vitro diagnostics, we identified 99 routing sub-problems of interest. We performed three comparisons per sub-problem, running the baseline routing algorithm with voltages of 30V, 50V, and 70V, yielding routing times denoted of \(t_{30V}, t_{50V}, \) and \(t_{70V} \). We then ran the continuous-time domain routing algorithm using \(t_{30V}, t_{50V}, \) and \(t_{70V} \) as timing constraints, and report the energy savings \(E^*_{30V}, E^*_{50V}, \) and \(E^*_{70V} \).

B. Results and Analysis

Fig. 8 reports the energy savings attained for all routing sub-problems at all three Voltage levels, and Fig. 9 concisely summarizes the results. The two key observations are: (1) for a given voltage level, the attainable energy savings varies significantly between routing sub-problems; and (2) greater energy savings are attainable at lower voltage levels.

The variation in energy savings across sub-problems is readily apparent in Fig. 9. The standard deviation in energy savings is equal to the average for the 30V experiments, and greater than the average for the 50V and 70V experiments. The reason for these high variations is not algorithmic inconsistency, but is actually an inherent property of the routing sub-problem instances. The experiment is set up so that the droplet that finishes last will take the same path and consume the same amount of energy in both the discrete and continuous-time models; whatever energy savings is accrued is due to other droplets slowing down by throttling the voltage. Droplets whose routes are significantly shorter than the longest route can travel at very low velocities without violating the timing constraint; thus, the greatest possible energy savings can be accrued for problem instances that have an inordinate number of droplets that fall into this category. In contrast, it is difficult to achieve significant energy savings for problem instances where all droplet routes have approximately equal length.
Next, we address the issue of why the lower baseline voltage levels achieve greater energy savings than the higher voltage levels across the different routing sub-problems that were examined. As an example, Fig. 10 shows the droplet routing times and energy consumed for routing sub-problem 32 of ProteinSplit 3. The length of the longest droplet route at 30V is 2.9x longer than the length of the longest droplet route at 50V, and 5.6x longer than the length of the longest droplet route at 70V. As a consequence, there is a much greater window of time during which the compactor can slow down non-critical droplets to reduce energy at lower voltage levels.

Looking exclusively at the discrete routing model, increasing the baseline voltage yields a net energy savings because higher voltages yield higher droplet velocities, and shorter completion times. Thus, more energy is required to activate a sequence of electrodes at 30V for 9.8 seconds than to activate a sequence of electrodes at 50V for 3.4 seconds. Given the timing constraint provided by the discretized routing model at each voltage level, the continuous-time routing model reduces energy consumption; however, diminishing energy savings are observed at higher voltage levels due to shorter route completion times.

Altogether, these results demonstrate that varying the voltage applied to transport droplets at varying velocities in the continuous time-domain droplet routing model can lead to significant energy savings for favorable droplet routing sub-problems.

VI. Conclusion

This paper has developed the first algorithm by which synthesis tools can control droplet velocity and DMFB energy consumption during droplet transport by varying the voltage applied to electrodes. Both voltage and velocity are continuous quantities, so dealing with continuous, rather than synchronized and discrete, fluid flow creates new algorithmic challenges, especially to detect and prevent interference region constraint violations. Due to the discrete nature of the 2D electrode array, the interference regions themselves remain discrete, even though droplet transport is continuous in time. The proposed interference constraint detection algorithms leverages this observation to bound the number of distinct points in time at which constraints must be checked. This mechanism was integrated into a new continuous voltage-aware droplet routing algorithm, targeting activate-matrix actuation technology, which minimizes energy consumption while meeting timing constraints on droplet routes.

This initial foray into continuous droplet transport control is expected to launch future investigations on other aspects of DMFB synthesis that can be handled in the continuous domain. For example, it may be possible to leverage voltage assignment to explore trade-offs involving operation latency and energy consumption during scheduling.
The tradeoffs explored in this paper can be extended to account for different problem formulations such as minimizing droplet transport time given an energy budget, and routing wash droplets to reduce cross-contamination. This work promotes understanding of DMFBs as cyber-physical systems that control continuous physical quantities with a hybrid discrete-continuous architecture.

Acknowledgment

This work was supported in part by NSF Grant CNS-1035603. D. Grissom was supported by an NSF Graduate Research Fellowship. J. Fiske was supported by a UC LEADS summer internship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF.

References