Arithmetic Optimization for Custom Instruction Set Synthesis

Motivating Example

Instruction set extensions (ISEs) accelerate ASIPs.

Apply arithmetic optimizations to the ISEs to form networks of full-adders.

Our Goal: Optimize the networks for delay.

Prior Work: Three Greedy Algorithm (TGA)

- Requires a-priori knowledge that the function computed by the network is a multi-input adder.
- Always synthesizes a delay-optimal compressor tree.

Our Approach

- Requires no a-priori knowledge of the function computed by the network.
- A compressor tree is **not** delay-optimal when input bit arrival times are **highly skewed**.
- Synthesize a delay-optimal full adder network.
- Unlike the TGA, the network synthesized by our approach may contain:
 - Internal carry-propagate adders.
 - Multiple distinct compressor trees.

All Input Bits Arrive at the Same Time

Input Bit Arrival Times

- Naïve Solution (Sub-optimal)

Input Bit Arrival Times are Skewed

d >> Delay(FA)

- TGA Solution (Sub-optimal)

Swap Signals to Reduce Delay

Multiple Compressor Trees may be Better than One

Naïve Solution
- Delay = 1.65ns
- Area = 18495μm²

TGA Solution
- Delay = 1.64ns
- Area = 17876μm²

Our Solution
- Delay = 1.48ns
- Area = 17553μm²

Results

Normalized Delay

Benchmarks