Register Allocation in Synthesis
- Polynomial solution for chordal graphs
- In SSA Form, interference graph is chordal
- Only if definition of each variable dominates each use (a Regular Program)
- Contribution: Polynomial algorithm to convert irregular SSA Form program to regular form
 - Ensures a polynomial solution to the problem for all applications, since any procedure can be converted to SSA Form

SSA Form
- Each variable is defined once
- Each use corresponds to one definition
- ϕ-functions merge variables defined along converging paths

Dominance Relation
- $A \text{ dom } B$ if every path from the entry node (r) of a flowgraph to B passes through A
- $A \text{ sdom } B$ (strict dominance) if $A \text{ dom } B$ and $A \neq B$
- $A = \text{idom } B$ if $A \text{ sdom } B$ and there is no node C such that $A \text{ sdom } C \text{ sdom } B$

Non-Strict Use
- The definition of v does not dominate the use
- Must Fix!

Non-Initialized Use
- No path from the definition of v to the use
- Replace the use with NULL

Algorithm to Fix Non-Strict Uses
- Place a ϕ-function $v' \leftarrow \phi(v, ..., v)$ in block m' s. t.:
 - (1) $m' \text{ dom } m$
 - (2) there is a path from n to m'
 - (3) there is no path from n to idom m'
- Replace the use of v in m with a use of v'
- Recursively process the ϕ-function parameters, which are uses in a predecessor block m'' of m'

Non-Initialized Use
- Strict use if $n \text{ dom } m''$
- Non-strict otherwise